В настоящее время традиционно состав штабеля по крупности слагающих его кусков di описывается с помощью приближённой гистограммы распределения, в которой указываются диапазоны разрядов идолевое содержание объёмов фракций. Например, так называемый рядовой штабель [44] имеет разряды (в м) – 0–0,1; 0,1–0,2; 0,2–0,4; 0,4–0,6 и соответствующее процентное содержание – 30; 30; 30; 10 (рис. 2.2). С помощью гистограммы можно определить средний размер куска dср в полном объёме штабеля. Такое представление состава штабеля недостаточно информативно и не позволяет с достаточной точностью решать задачу о гранулометрическом составе малого объёма v << V, где V – объём штабеля и, соответственно, о среднем размере куска в объёме v. Это, в свою очередь, препятствует разработке математических моделей процессов взаимодействия погрузочных и транспортирующих органов со штабелем при случайном изменении размера куска.
Гранулометрический состав рядового штабеля
d, м |
0…0,1 |
0,1…0,2 |
0,2…0,4 |
0,4…0,6 |
х |
0…0,166 |
0,166….0,332 |
0,332…0,667 |
0,667…1 |
pi* |
0,3 |
0,3 |
0,3 |
0,1 |
Рис. 2.2. Описание штабеля как функции случайной величины размера куска di
В реальном штабеле размер куска d – это непрерывная случайная величина, которая изменяется в пределах (0, dmax). Такое утверждение следует из того, что число кусков в штабеле достигает порядка 104. Поэтому состав штабеля логично представить в виде непрерывной функции F(d) (или плотности f(d)) распределения случайной величины d [93, 94].
Подбор аппроксимирующей кривой F(d) выполнен путём следующих преобразований экспериментальной гистограммы распределения (рис. 2.2):
в качестве случайной величины X выбрано отношение d/dmax, что позволило придать функции F(x) безразмерную форму;
по экспериментальным данным построена ступенчатая функция распределения , где – вероятность (частость) попадания случайной величины xn на соответствующий интервал;
через точки А1, А2, …, Аn проведена теоретическая функция распределения F(x), удовлетворяющая условиям ; , где mx – математическое ожидание случайной величины x = d/dmax;
соответствие теоретической функции распределения F(x) экспериментальным данным оценено с использованием критерия Пирсона – c2 [96].
По приведённой методике оценена степень приближения для ряда известных несимметричных функций распределения и показано, что наибольшей теснотой связи обладают логнормальное и экспоненциальное распределения. Последнее принято в качестве основного для дальнейших исследований. Функция распределения имеет вид: F(x) = a (1 – e –bx).
Значения коэффициентов a и b определялись в среде MathCad [98] по граничным условиям, заданной величине математического ожидания при минимальном среднеквадратическом отклонении искомой кривой от экспериментальных точек: