Все о транспорте
 

Описание состава штабеля как функции случайной величины размера куска

Страница 1

В настоящее время традиционно состав штабеля по крупности слагающих его кусков di описывается с помощью приближённой гистограммы распределения, в которой указываются диапазоны разрядов идолевое содержание объёмов фракций. Например, так называемый рядовой штабель [44] имеет разряды (в м) – 0–0,1; 0,1–0,2; 0,2–0,4; 0,4–0,6 и соответствующее процентное содержание – 30; 30; 30; 10 (рис. 2.2). С помощью гистограммы можно определить средний размер куска dср в полном объёме штабеля. Такое представление состава штабеля недостаточно информативно и не позволяет с достаточной точностью решать задачу о гранулометрическом составе малого объёма v << V, где V – объём штабеля и, соответственно, о среднем размере куска в объёме v. Это, в свою очередь, препятствует разработке математических моделей процессов взаимодействия погрузочных и транспортирующих органов со штабелем при случайном изменении размера куска.

Гранулометрический состав рядового штабеля

d, м

0…0,1

0,1…0,2

0,2…0,4

0,4…0,6

х

0…0,166

0,166….0,332

0,332…0,667

0,667…1

pi*

0,3

0,3

0,3

0,1

Рис. 2.2. Описание штабеля как функции случайной величины размера куска di

В реальном штабеле размер куска d – это непрерывная случайная величина, которая изменяется в пределах (0, dmax). Такое утверждение следует из того, что число кусков в штабеле достигает порядка 104. Поэтому состав штабеля логично представить в виде непрерывной функции F(d) (или плотности f(d)) распределения случайной величины d [93, 94].

Подбор аппроксимирующей кривой F(d) выполнен путём следующих преобразований экспериментальной гистограммы распределения (рис. 2.2):

в качестве случайной величины X выбрано отношение d/dmax, что позволило придать функции F(x) безразмерную форму;

по экспериментальным данным построена ступенчатая функция распределения , где – вероятность (частость) попадания случайной величины xn на соответствующий интервал;

через точки А1, А2, …, Аn проведена теоретическая функция распределения F(x), удовлетворяющая условиям ; , где mx – математическое ожидание случайной величины x = d/dmax;

соответствие теоретической функции распределения F(x) экспериментальным данным оценено с использованием критерия Пирсона – c2 [96].

По приведённой методике оценена степень приближения для ряда известных несимметричных функций распределения и показано, что наибольшей теснотой связи обладают логнормальное и экспоненциальное распределения. Последнее принято в качестве основного для дальнейших исследований. Функция распределения имеет вид: F(x) = a (1 – e –bx).

Значения коэффициентов a и b определялись в среде MathCad [98] по граничным условиям, заданной величине математического ожидания при минимальном среднеквадратическом отклонении искомой кривой от экспериментальных точек:

Страницы: 1 2

 
 

Сварочное отделение
Электросварочное отделение служит для выполнения сварочно-наплавочных работ при восстановлении деталей вагонов. В сварочном отделении оборудованы специальные кабины, где установлены автоматы и полуавтоматы. При разработке технологических процессов предусматривается широкое применение автоматической сварки под флюсом, автоматической и полуавтоматической в среде защитных газов, порошковой проволоки, контактной сварки и т.п., обеспечивающих требуе ...

Общий маркетинг на предприятии
Маркетинг - одна из основополагающих дисциплин для профессиональных деятелей рынка, таких, как розничные торговцы, работники рекламы, исследователи маркетинга, заведующие производством новых и марочных товаров и т.п. Им необходимо знать, как описать рынок и разбить его на сегменты; как оценить нужды, запросы и предпочтения потребителей в рамках целевого рынка; как сконструировать и испытать товар с нужными для этого рынка потребительскими свойс ...

Описание конструкции проектируемого приспособления
При работе с КП переднеприводных автомобилей с цилиндрической главной передачей (поперечное расположение двигателя) и гипоидной (продольное расположение) было замечено, что один из используемых съемников после соответствующей доработки оказался наиболее универсальным, позволяющим в той или иной степени разбирать первичные и вторичные валы этих КП. Съемник имеет захваты с губками трех толщин и не вращающийся наконечник винта. Последнее особенно ...