Все о транспорте
 

Описание состава штабеля как функции случайной величины размера куска

Страница 1

В настоящее время традиционно состав штабеля по крупности слагающих его кусков di описывается с помощью приближённой гистограммы распределения, в которой указываются диапазоны разрядов идолевое содержание объёмов фракций. Например, так называемый рядовой штабель [44] имеет разряды (в м) – 0–0,1; 0,1–0,2; 0,2–0,4; 0,4–0,6 и соответствующее процентное содержание – 30; 30; 30; 10 (рис. 2.2). С помощью гистограммы можно определить средний размер куска dср в полном объёме штабеля. Такое представление состава штабеля недостаточно информативно и не позволяет с достаточной точностью решать задачу о гранулометрическом составе малого объёма v << V, где V – объём штабеля и, соответственно, о среднем размере куска в объёме v. Это, в свою очередь, препятствует разработке математических моделей процессов взаимодействия погрузочных и транспортирующих органов со штабелем при случайном изменении размера куска.

Гранулометрический состав рядового штабеля

d, м

0…0,1

0,1…0,2

0,2…0,4

0,4…0,6

х

0…0,166

0,166….0,332

0,332…0,667

0,667…1

pi*

0,3

0,3

0,3

0,1

Рис. 2.2. Описание штабеля как функции случайной величины размера куска di

В реальном штабеле размер куска d – это непрерывная случайная величина, которая изменяется в пределах (0, dmax). Такое утверждение следует из того, что число кусков в штабеле достигает порядка 104. Поэтому состав штабеля логично представить в виде непрерывной функции F(d) (или плотности f(d)) распределения случайной величины d [93, 94].

Подбор аппроксимирующей кривой F(d) выполнен путём следующих преобразований экспериментальной гистограммы распределения (рис. 2.2):

в качестве случайной величины X выбрано отношение d/dmax, что позволило придать функции F(x) безразмерную форму;

по экспериментальным данным построена ступенчатая функция распределения , где – вероятность (частость) попадания случайной величины xn на соответствующий интервал;

через точки А1, А2, …, Аn проведена теоретическая функция распределения F(x), удовлетворяющая условиям ; , где mx – математическое ожидание случайной величины x = d/dmax;

соответствие теоретической функции распределения F(x) экспериментальным данным оценено с использованием критерия Пирсона – c2 [96].

По приведённой методике оценена степень приближения для ряда известных несимметричных функций распределения и показано, что наибольшей теснотой связи обладают логнормальное и экспоненциальное распределения. Последнее принято в качестве основного для дальнейших исследований. Функция распределения имеет вид: F(x) = a (1 – e –bx).

Значения коэффициентов a и b определялись в среде MathCad [98] по граничным условиям, заданной величине математического ожидания при минимальном среднеквадратическом отклонении искомой кривой от экспериментальных точек:

Страницы: 1 2

 
 

Объём единичного захвата ковшом. Предельная вместимость ковша и объём ссыпания
В математической модели объёма единичного захвата используется известное предположение [63], что объём черпания в цикле определяется площадью раздельного зачерпывания Fзач., приведённой шириной ковша Вк', коэффициентом совмещения внедрения и черпания Kсм и объёмом ссыпания ∆V. В общем случае V = Вк' Fзач × Kсм. – ∆V. (3.46) Площадь раздельного черпания может быть вычислена как площадь фигуры АВС, ограниченной траекторией пер ...

Определение затрат на создание стенда
Затраты на создание стенда определяются методом прямого счета на основе нормативов материальных и трудовых затрат. Исходными данными для выполнения расчета стоимости стенда являются: перечень комплектующих изделий, необходимых для его постройки; нормы трудоемкости по видам работ и средние разряды работ по изготовлению, сборке и монтажу, часовые тарифные ставки по разрядам работ, нормативные отчисления на социальное страхование и дополнительную ...

Подготовка исходных данных для определения скоростных и тягово-динамических характеристик
Для шины 1220х400–533 из источника [1] находят, что наружный диаметр колеса D=1200±10 мм, свободный радиус мм, статический радиус мм. На дороге с твердым покрытием можно считать м. Кинематический радиус качения колеса находят по формуле (13): м. (13) Далее принимают следующие значения коэффициентов и параметров: – коэффициент коррекции ; – коэффициент, учитывающий влияние скорости движения, kf=6∙10-6; – коэффициент обтекаемости k ...