Все о транспорте
 

Общие требования к конструкциям элементов несущего винта

Материалы » Оптимизация конструкции лонжерона лопасти несущего винта вертолета » Общие требования к конструкциям элементов несущего винта

Страница 1

Общие требования, предъявляемые к конструкции элементов НВ, противоречивы и проектирование несущей системы вертолета является сложной задачей нахождения компромисса между ними. Требования можно подразделить на следующие группы.

Аэродинамические требования. Взаимное расположение частей НВ, его формы и параметры должны обеспечивать высокие летно-технические характеристики. Конструкция лопастей должна обеспечивать заданные характеристики аэродинамического контура и балансировку в пределах, которые позволяют эксплуатировать вертолет с учетом установленных ограничений, ресурсов и сроков службы [3].

Требования прочности. Все элементы конструкции вертолета должны выдерживать все виды нагрузок в соответствии с нормами летной годности вертолетов, в которых предусмотрены различные случаи нагружения частей вертолета [1].

По видам нагрузок элементы несущего винта должны проектироваться с учетом статической, усталостной прочностей и их совокупности. Также, ввиду того, что лопасть НВ является длинномерной конструкцией, необходим учет прочности по устойчивости конструкции.

Статическая прочность конструкции проверяется при больших редко действующих нагрузках. При этом расчет и выбор параметров конструкции проводится по разрушающей нагрузке Рразр. которая должна превосходить эксплуатационную Рэ в некоторое число раз. Это число называют коэффициентом безопасности f . Для авиационных конструкций f принято выбирать равным 1,5. Чрезмерное увеличение значения этого коэффициента ведет к возрастанию габаритов и массы, что является недопустимым для конструкции летательного аппарата. Для каждого агрегата вертолета и конкретного случая его нагружения рекомендуемые значения коэффициентов безопасности даются в "Авиационных правилах". Начальным этапом определения размеров детали является проектировочный расчет по допускаемым напряжениям. Размеры сечений детали рассчитываются таким образом, чтобы действующие в них напряжения от расчетной нагрузки σр , были равны допускаемым напряжениям [σ], [τ]. В качестве допускаемых напряжений принимаются пределы прочности σ в , τ в или текучести σ т в зависимости от характера и условий нагружения конструкции. Определенные трудности возникают при выборе допускаемых напряжений в деталях, изготавливаемых из композиционных материалов, вследствие особенностей характера их разрушения. На рисунке 1.1 представлена диаграмма изменений напряжений в зависимости от удлинения образца однонаправленного стеклопластика при приложении нагрузки вдоль армирующих волокон [2].

В начале нагружения до некоторого момента материал сохраняет целостность и ведет себя как упругий, подчиняясь закону Гука: σ = Е·ε . После достижения напряжений, соответствующих точке 1 (рисунок 1.1), в связующем на разделе сред появляются мелкие трещины. Армирующие элементы здесь не разрушаются, и конструкция не теряет несущих свойств. Более того, для некоторых материалов наблюдается увеличение жесткости. На второй стадии (рисунок 1.1, точка 2) вдоль армирующих элементов появляются значительные трещины, но волокна не повреждаются. Конструкция еще сохраняет несущие свойства. На третьей стадии (рисунок 1.1, точка В) армирующие нити рвутся, и материал полностью разрушается. Если допускаемые напряжения при действии максимальных эксплуатационных нагрузок выбирать соответствующими последней стадии разрушения (σв), то может оказаться, что при действии номинальных нагрузок материал будет находиться в первой или второй стадиях разрушения. Это недопустимо, поскольку при повторных нагрузках трещины в конструкции будут расти, ускоряя ее разрушение. Поэтому прочность деталей из композиционных материалов следует оценивать как при максимальных, так и при номинальных нагрузках эксплуатации. Это противоречие в ряде случаев преодолевается выбором большого значения коэффициента безопасности f = 2,0–2,5 и занижением допускаемых напряжений в композите до уровня 2/3σв при расчете конструкции на предельную несущую способность.

Страницы: 1 2 3

 
 

Определение параметров помещений вагонного пассажирского депо Ростов с учетом реконструкций
Таблица 16. Свод основных параметров помещений депо. Наименование отделения Размеры, м Площадь М2 Объем М3 длина ширина высота ВСУ 108 24 10,8 2592 27994 МО 60 24 10,8 1440 15552 Тележечный участок 48 12 7,2 576 4147 Колесно-роликовый участок 60 12 7,2 720 5184 Механическое отделение 30 12 4,2 360 1512 Кузнечное отд ...

Выбор гидроцилиндра на перемещение емкости
Гидроцилиндр предназначен для перемещения емкостей со щебнем . Резьба на корпусе позволяет закрепить гидроцилиндр и использовать его в качестве силового органа. Гидравлический возврат штока позволяет быстро вернуть шток в исходное положение, сокращая рабочий цикл. Сила на штоке гидроцилиндра: , (16) где: -сила на штоке гидроцилиндра; - масса емкости со щебнем - коэффициент трения качения ,=0,05. Перед тем как определить массу емкости со щ ...

Предварительная прокладка и планирование перехода
Расчет дальности видимости маяков: Расстояние, с которого в действительности можно видеть огонь ночью называют оптической дальностью видимости огня и рассчитывают по формуле: Дo = Дк + 2,08– 4,7. 1)Амасра 6Пр10с20М D=20+1,54=21,54 мили 2)Зонгулдак бПр5с20М D=20+1,54=21,54 мили 3)Олюдже бПр(2)10с15МГорн D=15+1,54=16,54 мили 4)Кефкен бПр(3)15с13МГорн D=13+1,54=14,54 мили 5) Шиле бПр15с25М D=25+1,54=26,54 мили 6)Анадолу бДлПр20с20М D ...