Все о транспорте
 

Определение температуры охлаждающей среды и скоропортящихся грузов

Материалы » Определение температуры охлаждающей среды и скоропортящихся грузов

Страница 3

Полупроводниковые термометры сопротивления установлены в 5-вагонных секциях ZB-5 и автономных рефрижераторных вагонах (АРВ). Температурные датчики размещены на входе и выходе воздуха из испарителя (1 и 2 - первого испарителя, 5, 6 - второго) и на боковых стенах (3,4), а для измерения температуры груза служит датчик термометра на гибком проводе (7). Место подключения переносной термостанции обозначено цифрой 8. Схема размещения датчиков температуры в грузовом помещении АРВ приведена на рис.1.7.

Рис.1.7 Схема размещения датчиков температуры в грузовом помещении АРВ

Переносная термостанция собрана по схеме уравновешенного моста и необходима для снятия показаний температуры без вскрытия грузового помещения вагона. Измерение проводится механиком пункта технического обслуживания АРВ. Переносной термостанцией оснащены также и 5-вагонные рефрижераторные секции. Сопровождающая бригада использует ее для более точного измерения температуры в грузовых вагонах.

Основными датчиками, используемыми для измерения температуры на рефрижераторном подвижном составе, являются терморезисторы типа ТСП-6108 (платиновые, сопротивлением 100 Ом при температуре 0°С) и ТСМ-010 (медные сопротивлением 53 Ом при температуре 0°С), а также термисторы типа ТNМ (сопротивлением 2500 Ом при температуре 0°С).

Рис.1.8 Переносная термостанция

Переносная термостанция (рис.1.8) - для измерения температуры в грузовом помещении АРВ и 5-вагонных секциях. При подключении к розетке 1 измеряют температуры входящего и выходящего воздуха воздухоохладителя первого агрегата, к розетке 2 - в грузовом помещении (левая и правая сторона), к розетке 3 - температура входящего и выходящего воздуха воздухоохладителя второй холодильной установки. Термостанция с помощью удлинителя 4 соединена со специальной вилкой 5, которую при измерении подключают поочередно в розетки 1,2,3.

К термометрам сопротивления также относится термопара

(рис.1.9), которая состоит из двух спаянных металлических проводников, присоединенных проводами к чувствительному гальванометру. По отклонению стрелки гальванометра определяют разность температур среды, в которую помещен рабочий спай, и среды, в которой находятся свободные концы термопары. С помощью термопары измеряют температуру в пределах от - 50°С до 1000°С и выше. Например, термопара платина-родий-платина имеет диапазон измерений от - 20 до 1300°С.

Рис.1.9 Схема измерения температуры термопарой: 1 - рабочий спай; 2 и 3 - свободные концы; 4 - гальванометр

Термопары по способу действия основаны на изменении электродвижущей силы постоянного тока в спае двух разнородных металлов вследствие разности температуры окружающей среды у рабочего спая и свободных концов. Самым распространенным термоэлементом является NiCr - Ni.

Термограф - прибор для измерения и регистрации температуры. К основным конструктивным элементам термографа относятся: термометр, самописец для регистрации показаний термометра на бумажной диаграмме, часовой механизм, приводящий в движение диаграмму или самописец относительно друг друга. В термографах рефрижераторных вагонов и контейнеров в качестве термометров используют термометры сопротивления.

В настоящее время в связи с развитием электронной техники, большое распространение получила технология измерения температуры с применением электронных термометров: инфракрасный термометр с лазерным целеуказателем; высокотемпературный термометр; минитермометр с проникающим зондом и сигналом тревоги.

Все тела излучают электромагнитные волны, то есть излучают тепло в зависимости от их температуры. В процессе теплового излучения энергия перемещается, что позволяет измерять температуру тела на расстоянии без контакта с телом.

Бесконтактное измерение поверхности температуры получило распространение в 90-х годах 20 века и применяется главным образом, там, где контактные термометры не могут быть использованы.

Технология инфракрасного измерения обеспечивает легкую регистрацию температурных данных даже при быстрых и динамичных процессах. К тому же, бесспорным преимуществом технологии является малое время реакции сенсоров и систем.

Практической реализацией в настоящее время является инфракрасный термометр с лазерным целеуказателем - прибор для бесконтактного измерения температуры (рис.1.10). Прибор имеет память на 90 протоколов измерений, звуковую сигнализацию, которая используется в случаях превышения заданных предельных значений температур, а также программное обеспечение для архивации и документирования данных измерений с помощью ПЭВМ.

Страницы: 1 2 3 4 5

 
 

Расчет годовой трудоемкости ТО и Р
Годовая трудоемкость ЕО технологически совместимых автомобилей в год, чел-ч: ; (3.34) Годовая трудоемкость УМ технологически совместимых автомобилей в год, чел-ч: ; (3.35) Годовая трудоемкость ТО-1 технологически совместимых автомобилей в год, чел-ч: ; (3.36) Годовая трудоемкость ТО-2 технологически совместимых автомобилей в год, чел-ч: ; (3.37) Годовая трудоемкость ТР технологически совместимых автомобилей в год, чел-ч/1000 км: ; (3.3 ...

Расчет потребностей автомобиля в топливе
Т=Тэ+Тз+Тг, л – общая потребность автомобильного предприятия в топливе. Новосибирская область 12% -5,5 мес – поправка в зимнее время αобщ =Тн*Vэ*Асп * Dк*αв D=15% Тз=Тэ*Нм*Мз/(12*100), л Нм=12%; Мз=6. Тг=0,01(Тэ+Тз), л ЛАЗ 695 Н100=16,0 Дт αобщ= 12,1*21,5*110*365*0,87=9087169,575 л. Тэ=(*41)*(1+0,01*0,15)=3731328,135 Тз=3731328,135*0,12*6/12000=223,879 Тг=0,01(3731328,235+223,879)=373,52 л Т=37315,52+223,879+3731328, ...

Общее построение инженерной методики
Целью разработки инженерной методики выбора эффективных вариантов ППТМ является создание инструмента пользователя, позволяющего в приемлемые сроки производить сопоставление по эффективности технически пригодных вариантов ППТМ для данных конкретных условий проведения выработки (или группы выработок). Основные требования, предъявляемые к инженерной методике выбора [5, 99], сводятся к следующему: адекватное воспроизведение рабочих процессов погр ...