Все о транспорте
 

Годовая программа ремонта автосцепного оборудования КПА

Страница 1

Программа ремонта определяется из расчета количества автосцепных комплектов, поступающих из ВСУ и с ПТО:

Nавт = Nв ∙2∙1,2, авт.ком.,(35)

где 2 – количество автосцепных комплектов на одном вагоне;

1,2 – коэффициент, учитывающий 20% комплектов от годовой программы, поступающих с ПТО.

Nавт = 710 ∙ 2 ∙ 1,2 = 1704 авт.ком.

При такой программе ремонта участка внедрение поточно-конвеейрной линии /9/ не целесообразно, так как будет простой оборудования. Таким образом предлагаемый стационарный метод ремонта при перемещении деталей по отделениям удовлетворяет потребность ВСУ и ПТО в отремонтированном автосцепном оборудовании.

Определение штата работников КПА

Расчет штата рабочих для ремонта автосцепного устройства в КПА производим по формуле (36)

, чел,(36)

где Навт = 7,2 чел.-час – трудоемкость ремонта автосцепного устройства.

чел.

Приведенный расчет удовлетворяет определенной ранее численности работников по ремонту автосцепного устройства при расчете штата депо.

Распределение работников по профессиям представлено в таблице 17.

Таблица 17 Штатная ведомость работников КПА.

Профессия

Трудоемкость Навт,

чел.-час

Количество, чел.

Слесарь

2,4

2

Строгальщик

1,2

1

Сварщик

1,2

1

Термист

1,2

1

Дифектоскопист

1,2

1

Итого

7,2

6

Определение производственной площади

Реконструированный участок КПА имеет следующие размеры: L = 19м, В = 9м, Н = 4,7м.

Исходя из этих данных определяем площадь КПА

м2

Принятая площадь удовлетворяет нуждам депо и ПТО по ремонту автосцепных устройств и нормам размещения оборудования.

Контроль корпуса автосцепки феррозондовым методом

До настоящего времени для контроля корпуса автосцепки в депо Ростов СКЖД использовали 2 метода:

1- магнитопорошковый для контроля хвостовика;

2- вихретоковый для контроля неровных поверхностей головы автосцепки.

Для уменьшения затрат на технические средства контроля и трудоемкости работ предлагаем внедрить магнитный неразрушающий контроль корпуса автосцепки феррозондовым методом.

Феррозондовый метод неразрушающего магнитного контроля основан на обнаружении магнитных полей рассеяния, вызванных поверхностными и подповерхностными дефектами в намагниченных деталях. Этот метод позволяет контролировать детали как плоскими поверхностями, так и со сложной геометрической формой, меняется лишь тип феррозондового преобразователя (ФП), что при контроле корпуса автосцепки, имеющего сложную конфигурацию, имеет большое значение.

Порядок выполнения феррозондового неразрушаемого контроля корпуса автосцепки регламентирует приложение к РД 32.149/I-2000 /10/.

К техническим средством контроля корпуса относится:

- прибор магнитоизмерительный феррозондовый комбинированный

Ф – 205.30А ;

- намагничивающие устройства МСН 11-01 и МСН 12-01 ;

- стандартный образец СОП-НО-23.

Прибор магнитоизмерительный феррозондовый комбинированный Ф-205.30А.

Прибор Ф-205.30А МКИЯ. 427633.001-30А МКИЯ. 427.633.001 позволяет выполнять следующие основные операции:

- «ввод технологической операции» позволяет вводить в память прибора заголовок с информацией о детали, которую предполагается контролировать в рамках операции «обнаружение дефектов». Под этим же заголовком может вводиться таблица измерений, выполняемых в рамках операции «запись характеристик поля»;

Страницы: 1 2 3

 
 

Расчет скоростной характеристики двигателя
Скоростная характеристика двигателя – это зависимость мощности и крутящего момента от частоты вращения коленчатого вала. В случае, если максимальная мощность двигателя Nmax известна по автомобилю-прототипу, внешнюю скоростную характеристику можно рассчитать по формуле Р.С. Лейдермана: Ne = Nmax×[a×ne/nN + b×(ne/nN)2 - c×(ne/nN)3], (6) где a, b, c – коэффициенты, учитывающие тип двигателя, форму камеры сгорания двигате ...

Методы нормирования межоперационных простоев вагонов
На сортировочных станциях на долю межоперационных простоев вагонов (за вычетом времени на производственные операции и накопления) приходится 40-50% (а нередко и более) от общего времени простоя транзитных вагонов с переработкой. В простое местных вагонов на различных станциях на долго межоперационных простоев приходится 70% и более от общего времени. Существует 3 основных метода нормирования межоперационных простоев. 1. С помощью суточного пл ...

Крыло
Крыло для создания силы и обеспечения поперечной устойчивости самолета. Крыло самолета трапециевидной формы в плане со стреловидностью 32. Крыло представляет собо1 кессонную конструкцию, составляющих из верхних панелей и нижних панелей., обшивка со стрингерами наборами трех лонжеронами балочного типа. Поперечный набор крыла служат нервюры от нулевых до концевых. К продольными наборами относится лонжероны, балки. Обшивка крыла выполняется из м ...