Все о транспорте
 

Математические модели процесса внедрения ковша в штабель

Страница 3

(3.15)

где mм – масса погрузочной машины, кг; mв – масса прицепной части, например, вагонетки, кг; – угол наклона почвы выработки; м – скорость машины, м/с; Тсц – сила сцепления двигателя с основанием (рельсами, почвой), Н; Wвн(S) – сопротивление внедрению в функции глубины внедрения, Н; Мс – момент сопротивлений от ходовых перемещений машины, вагонетки, потерь в редукторе, Н×м; Jпр – приведённый к оси двигателя (колёса, звёздочки гусеничного механизма) момент инерции вращающихся масс – двигатель, редуктор, колёса и т.д., Н×мс2; wк – угловая скорость колеса, звёздочки, 1/с; Мqк – приведённый к оси движителя момент, развиваемый двигателем хода, Н×м.

Процесс внедрения состоит в общем случае из двух этапов:

движение без пробуксовки колёс относительно рельсов или гусениц относительно почвы с выключенным двигателем до достижения предельной силы сцепления Тсц;

движение после достижения Тсц предельной величины, после чего-либо возникает пробуксовка движителя с включённым двигателем хода, либо происходит отключение двигателя, и машина продолжает движение с реализацией кинематической энергии системы.

Решение системы уравнений (3.14), (3.15) позволяет получить зависимость S = f(t), где S – перемещение машины и, следовательно, ковша, t – время процесса. Для решения уравнений необходима информация о погрузочной машине (mм), прицепленной вагонетке (mв), законе сопротивлений внедрению ковша в штабель (Wвн(S)), моментах инерции вращающихся масс Ji и коэффициентах приведения каждой массы к оси движителя, внешней характеристике двигателя в функции угловой скорости Мдк , предельной силе сцепления движителя с основанием Тсц, моментах приведённых сопротивлений Мс. Необходимы также начальные условия (при t = 0, S = 0, м =) и граничные условия при переходе от первого этапа внедрения ко второму.

Принципиально решение системы нелинейных дифференциальных уравнений (3.14), (3.15) возможно приближенными методами на ПК, например, в программе MathCad. Практические затруднения возникают при получении информации о моментах инерции и внешней характеристике ходового двигателя.

Рассмотрено решение системы (3.14), (3.15) для ковшовых погрузочных машин двух типов:

с осевой разгрузкой ковша, на колёсно-рельсовом ходу, с электромеханическим приводом (аналог 1ППН-5);

с боковой разгрузкой ковша, смонтированного на жёсткой рукояти, на гусеничном ходу, с электрогидравлическим приводом (аналог МПК-3).

Машины с боковой разгрузкой ковша, смонтированного на поворотной телескопической рукояти, на гусеничном ходу, с электрогидравлическим приводом (аналог МПК-1000Т) не рассматриваются в динамическом процессе внедрения, так как в этих машинах ходовой механизм используется для маневровых операций; внедрение производится в статическом режиме механизмом гидравлического независимого напора.

При отсутствии пробуксовки колёс (гусениц) система (3.14), (3.15) на 1-м этапе может быть представлена одним уравнением:

, (3.16)

где mу – приведённая к поступательному движению масса вращающихся частей привода (двигатель, шестерни, валы, колёса); Тдк – приведённая к поступательному движению внешняя характеристика двигателя; Wc – приведённое к поступательному движению сопротивление от ходовых перемещений и потерь в редукторе.

Применяя известный порядок построения Тдк(uм) на основе данных, приведённых в технической характеристике погрузочной машины, получим для случая линейной характеристики двигатели на рабочем участке:

Tдк = Aдк – Bдк ×uм; ; ;

Tдк.ном – номинальная сила тяги:

;

мо – «синхронная» скорость движения машины:

.

Теперь уравнение (3.16) перепишем в виде:

mпр + Bдк × hрх + Wвн(S) =

Страницы: 1 2 3 4 5 6

 
 

Расчет размеров ВСУ
Общая длина ВСУ: (3.10) где Lрем – длина ремонтно-сборочного отделения; Lмал – длина малярного отделения. (3.11) (3.12) где l1 и l2 – расстояние от торцевых стен ремонтно-сборочного и малярного отделения, до начала ремонтных позиций соответственно, l1 = 3 м; l2 = 3 м; lпод – длина позиции поднятия вагона; lтел – ширина толкателя тележек, lтел = 6 м; сп – количество позиций поднятия кузова для выкатывания и подкатывания тележек, сп = ...

Выбор СИ по коэффициенту уточнения
Это самый простой способ, предусматривающий сравнение точности измерения и точности функционирования объекта контроля. При выборе СИ данным способом предусматривается введение коэффициента точности (уточнения) Кт при известном допуске на параметр Т То =2,5мм Tу=1,5мм F=25±1,25 F=15±0,75 (1.1) (1.2) где R – относительная погрешность метода измерений, которая равна 0,3 тогда Предел основной допускаемой погрешности СИ находят по формуле ...

Конструкция, принцип действия судового оборудования сбора, очистки нефтесодержащих вод
В рез-те экспл-ции суд-х мех-мов, в МО скапливаются НВ. В состав НВ входят: грубодисперстные(в виде капель) и фракции, в виде эмульсии. Судовые испыт-я позволии определить приделы изменения контрольных показателей подсланевых НВ:ВВ-75-2200 мг/л; БПК5-84-320 мг/л;коле-индекс- 1,1·109 .4·1010 (шт/л), концентрация нефтепродуктов-130-18000 мг/л. Способы очистки НВ:мех-й (отстаивание)-глубина очистки 40-100 мг/л;Флотация- глубина очистки20-60 мг/л-и ...