Рекомендуется расчет вести через 200, включив также угол 3700 (угол при котором px = pmax )
Возможно преобразования диаграммы производить графическим методом Брикса, описание которого приведено в литературе.
Как и в первом способе заполняем таблицу 5.
Силы инерции возвратно-поступательно движущихся масс (Кн):
Pj = -m j Rw2 (cos j+ lcоs2j)10 -3, (66)
где mj - приведенная масса возвратно-поступательно движущихся частей КШМ, кг;
R - радиус кривошипа, м;
w- угловая скорость колен вала, рад/с;
j- угол поворота колен вала, град.
Началом цикла работы двигателя считается ВМТ поршня в начале процесса впуска (j= 0). Приведенная масса возвратно-поступательно движущихся частей состоит из массы комплекта поршня и части массы шатуна:
mj = mп + (0,2 .0,3)mш , (67)
где m п. - масса комплекта поршня, кг;
m ш - масса условно возвратно-поступательно движущейся части шатуна, кг.
Масса m j считается сосредоточенной в центре поршневого пальца. В работе mп и m ш определяются:
, (68)
, (69)
где m`п и m`ш - удельные массы, соответственно поршня и шатуна прототипа расчетного двигателя (приложение 6), кг/м2 .
Угловая скорость коленвала (рад/с):
w= 2 pn е н (70)
В работе текущие значения сил Рj, Рr и Рå в зависимости от угла поворота заносим в таблицу 6, причем Рå определяем алгебраическим сложением Рr и Рj . Зависимость På = f(j) можно определить как графическим методом так и аналитическим. В курсовой работе рекомендуется использовать аналитический метод, который при примерно равной с графическим методом трудоемкости обеспечивает большую точность.
Таблица 6. Результаты динамического расчета КШМ
j |
Pг |
Рj |
På |
Pш |
N |
K |
T |
Mi = RT 103 |
град |
кН |
кН |
кН |
кН |
кН |
кН |
кН |
Нм |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 | ||||||||
20 | ||||||||
720 |