Все о транспорте
 

Прогнозная оценка эффективности различных вариантов погрузочно-транспортных модулей

Материалы » Моделирование рабочих процессов погрузочно-транспортных модулей с учетом случайного характера внешних воздействий » Прогнозная оценка эффективности различных вариантов погрузочно-транспортных модулей

Страница 9

Таблица 5.8

«Чистое» время выгрузки штабеля, STч1j / STч2j, мин

Вариант ППТМ, Р

Крепость пород

Тип штабеля,

Fi (d)

7

10

13

Р = 1

1.1

1.2

1.3

´

´

i = 4

´

´

i = 1

´

´

i = 3

Р = 3

3.1

´

´

i = 4

Р = 4

4.1

´

´

i = 4

Р = 5

5.1

´

´

i = 4

Р = 6

6.1

i = 4

Р = 7

7.1

i = 4

Моделирование вариантов ППТМ построено таким образом, чтобы проследить влияние крепости горной массы f (7; 10; 13), типа штабеля Fi(d) (i = 4; 1; 3), вида погрузочной машины в сочетании с различными видами призабойного транспорта. Так сформировался набор вариантов ППТМ, для которых выполнено имитационное моделирование в полном объёме. В таблице 5.8 начальная цифра означает вид ШПМ: 1 – 1ППН-5; 3; 4; 5 – МПК-3; 6; 7 – МПК-1000Т; вторая цифра – тип штабеля; третья – крепость породы.

Результаты моделирования потока единичных черпаний даны в таблице 5.7.

С увеличением крепости погружаемой горной массы (численное моделирование выполнено на примере ППТМ с машиной МПК-1000Т) производительность машин падает. Необходимо отметить, что при увеличении f в 1,85 раза производительность за общее время погрузки снижается только на 15 %, а коэффициент эффективности – на 28 % (рис. 5.14а). Причина такой нелинейной зависимости в непропорциональном изменении объёма единичного черпания (табл. 5.9):

при f = 7 – = 0,4 м3, при f = 13 – = =0,30 м3.

Как показывает анализ, при малых значениях f проявляются ограничения по вместимости ковша машин типа МПК. Этот эффект раскрыт более подробно в п. 3.3. Моделирование позволяет проследить неэффективное использование машин с боковой разгрузкой ковша: машины МПК-3 имеют низкий центр вращения ковша, малую площадь черпания; машины МПК-1000Т, несмотря на высокий центр вращения ковша, не могут обеспечить необходимое заполнение ковша из-за значительных объёмов ссыпания.

Страницы: 4 5 6 7 8 9 10 11 12 13

 
 

Построение векторной диаграммы и сил, действующих на шатунную шейку коленчатого вала
Графическое построение нормальной силы N, тангенциальной Т и радиальной К сил, действующих на шатунную шейку коленчатого вала в зависимости от угла поворота α, осуществляется по данным таблицы сил и моментов, действующих на КШМ двигателя. Для построения векторной диаграммы сил Rш необходимы значения сил Т1 и К1, действующих на шатунную шейку от одного цилиндра двигателя. Их определили ранее и их значения берём из таблицы. Силу давления н ...

Выбор технологии грузоперевалки
В курсовом проекте предполагается, что перевалка груза должна производиться в определенном порту, который выбирается студентом самостоятельно, по трем вариантам (d = 1,2,3): судно – вагон (d = 1), судно – склад (d = 2) и склад – вагон (d = 3) при разгрузке судна, а при загрузке судна – по тем же вариантам, но в обратном направлении. Предполагается также, что в каждом грузовом отсеке груз размещается как на просветах люков, так и в подпалубных п ...

Расчет ординат переводной кривой
Ординаты переводной кривой определяются в следующей последовательности. Начало координат располагается на рабочей грани рамного рельса против корневого стыка остряка. Из него откладываются абсциссы хi, через каждые 2000 мм и вычисляя соответствующие им ординаты уi. Концом переводной кривой является начало прямой вставки. Рисунок 3.8 – Схема расчёта ординат переводной кривой Конечная абцисса находится по формуле: Xк = R *(sinα* sin^ ...